Large time-step positivity-preserving method for multiphase flows
نویسندگان
چکیده
Using a relaxation strategy in a Lagrangian-Eulerian formulation, we propose a scheme in local conservation form for approximating weak solutions of complex compressible flows involving wave speeds of different orders of magnitude. Explicit time integration is performed on slow transport waves for the sake of accuracy while fast acoustic waves are dealt with implicitly to enable large time stepping. A CFL condition based on the slow waves is derived ensuring positivity properties on the density and the mass fraction. Numerical benchmarks validate the method.
منابع مشابه
An Asymptotically Preserving Method for Multiphase Flow
A unified, asymptotically-preserving method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotica...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملAn energy preserving formulation for the simulation of multiphase turbulent flows
In this manuscript we propose an energy preserving formulation for the simulation of multiphase flows. The new formulation reduces the numerical diffusion with respect to previous formulations dealing with multiple phases, which makes this method to be especially appealing for turbulent flows. In this work we discuss the accuracy and conservation properties of the method in various scenarios wi...
متن کاملMultiple - Relaxation - Time Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios - 10135
In this paper, the lattice Boltzmann method is reviewed for specific applications to numerical simulation of multiphase flow problems. A thorough literature review regarding the multi-phase lattice Boltzmann method was conducted with special focus on flows with large density and viscosity ratios between the two phases. A multiphase model with the capability of handling large-density-ratios is c...
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کامل